A New Class of Tilings with Two Prototiles
Brian Wichmann |
| No | Symmetries | Incidence | T | IH | Polygon | Name |
| Class | Class | |||||
| 1 | [cmm,d2,c1] | [a+b+c+d+e+;A+b-c+d-e-] | [32.43] | 54 | 2-star,p/3 | NEW16 |
| 2 | [cmm,d2,c1] | [a+b+c+d+;A+b+c-d-] | [3.52.4] | 54 | 2-star,p/3 | NEW17 |
| 3 | [cmm,d2,c1] | [a+b+c+d+;A+b-c+d-] | [3.6.42] | 54 | 2-star,p/3 | NEW52 |
| 4 | [cmm,d2,c1] | [a+b+c+;A+b+c-] | [6.52] | 54 | 2-star,p/3 | NEW53 |
| 5 | [cmm,d2,c1] | [a+b+c+d+;A+b-c+d-] | [32.82] | 78 | 2-star,p/3 | NEW1 |
| 6 | [cmm,d2,c1] | [a+b+c+;A+b+c-] | [3.102] | 78 | 2-star,p/3 | NEW20 |
| 7 | [cmm,d2,c2] | [(a+b+c+)2;A+b-c-] | [(32.4)2] | 60 | 2-star,p/3 | NEWA |
| 8 | [cmm,d2,c2] | [(a+b+)2;A+b-] | [(3.6)2] | 60 | 2-star,p/3 | NEW54 |
| 9 | [cmm,d2,d1] | [a+ba-c+d+d-c-;A+bc-d+] | [37] | 26 | 2-star,p/3 | NEW12 |
| 10 | [cmm,d2,d1] | [a+ba-c+c-;A+bc+] | [4.32.42] | 26 | 2-star,p/5 | S52T |
| 11 | [cmm,d2,d1] | [a+a-b+c+c-b-;A+b-c+] | [3.4.34] | 26 | 2-star,p/3 | NEW14 |
| 12 | [cmm,d2,d1] | [a+a-b+b-;A+b+] | [44] | 26 | 2-star,p/3 | NEW15 |
| 13 | [cmm,d2,d1] | [ab+c+d+d-c-b-;Ab-c-d+] | [32.4.33.4] | 26 | 2-star,p/3 | NEW11 |
| 14 | [cmm,d2,d1] | [ab+c+c-b-;Ab-c+] | [62.33] | 26 | 2-star,p/3 | NEW13 |
| 15 | [cmm,d2,d1] | [ab+c+dc-b-;Ab-c+d] | [32.44] | 67 | 2-star,p/3 | NEW18 |
| 16 | [cmm,d2,d1] | [ab+cb-;Ab+c] | [54] | 67 | 2-star,p/3 | NEW19 |
| 17 | [cmm,d2,d1] | [ab+c+c-b-;Ab-c+] | [32.63] | 91 | 2-star,p/3 | NEW21 |
| 18 | [cmm,d2,d1] | [ab+b-;Ab+] | [83] | 91 | 2-star,p/3 | NEW22 |
| 19 | [cmm,d2,d2] | [(ab+c+c-b-)2;Ab-c+] | [310] | 17 | 2-star,p/3 | NEW10 |
| 20 | [cmm,d2,d2] | [(ab+b-)2;Ab+] | [46] | 17 | 2-star,p/4 | NEW2 |
| 21 | [pmm,d2,c1] | [a+b+c+d+e+;A+b-c-d-e-] | [32.43] | 48 | 2-star,p/3 | NEW27 |
| 22 | [pmm,d2,c1] | [a+b+c+d+;A+b-c-d-] | [3.6.42] | 48 | 2-star,p/2 | NEW5 |
| 23 | [pmm,d2,c1] | [a+b+c+;A+b-c-] | [62.4] | 48 | 2-star,p/3 | NEW29 |
| 24 | [pmm,d2,d1] | [a+ba-c+dc-;A+bc-d] | [34.42] | 65 | 2-star,p/3 | NEW28 |
| 25 | [pmm,d2,d1] | [a+ba-c;A+bc] | [6.32.6] | 65 | 2-star,p/3 | NEW30 |
| 26 | [pmm,d2,d1] | [a+a-b+cb-;A+b-c] | [3.4.3.42] | 65 | 2-star,p/3 | NEW31 |
| 27 | [pmm,d2,d1] | [a+a-b;A+b] | [6.4.6] | 65 | 2-star,p/2 | CM006A |
| 28 | [pmm,d2,d1] | [ab+c+dc-b-;Ab-c-d] | [32.44] | 65 | 2-star,p/3 | NEW23 |
| 29 | [pmm,d2,d1] | [ab+cb-;Ab-c] | [62.42] | 65 | 2-star,p/3 | NEW25 |
| 30 | [pmm,d2,d2] | [(ab+cb-)2;Ab-c] | [(32.42)2] | 72 | 2-star,p/3 | NEW24 |
| 31 | [pmm,d2,d2] | [(ab)2;Ab] | [64] | 72 | 2-star,p/3 | NEW26 |
| 32 | [pmm,d2,d2] | [(a+ba-c)2;A+bc] | [38] | 72 | 2-star,p/2 | B17 |
| 33 | [pmm,d2,d2] | [(a+a-b)2;A+b] | [(3.4.3)2] | 72 | 2-star,p/2 | B14 |
Table 1: Order 2: cmm and pmm
| No | Symmetries | Incidence | T | IH | Polygon | Name |
| Class | Class | |||||
| 34 | [p3,c3,c1] | [a+b+c+d+e+f+g+;A+g+d+c+f+e+b+] | [37] | 7 | triangle | B16 |
| 35 | [p3,c3,c1] | [a+b+c+d+e+;A+c+b+e+d+] | [42.3.4.3] | 7 | triangle | NEW66 |
| 36 | [p3,c3,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.6.3.6] | 33 | triangle | NEW45 |
| 37 | [p3,c3,c1] | [a+b+c+;A+c+b+] | [92.3] | 33 | triangle | NEW74 |
| 38 | [p3,c3,c3] | [(a+b+c+)3;A+c+b+] | [39] | 10 | triangle | B12 |
| 39 | [p31m,c3,c1] | [a+b+c+d+e+;A+e+c-d-b+] | [32.4.6.4] | 30 | triangle | B03 |
| 40 | [p31m,c3,c1] | [a+b+c+;A+b-c-] | [63] | 30 | triangle | NEW44 |
| 41 | [p31m,c3,c1] | [a+b+c+d+;A+d+c-b+] | [32.122] | 38 | triangle | NEW43 |
| 42 | [p31m,c3,d1] | [a+b+b-a-c+d+d-c-;A+c-b-d-] | [38] | 16 | triangle | NEW49 |
| 43 | [p31m,c3,d1] | [a+a-b+b-;A+b-] | [52.3.5] | 16 | triangle | NEW85 |
| 44 | [p31m,c3,d1] | [a+b+b-a-c+c-;A+c-b-] | [(32.6)2] | 36 | triangle | L2311 |
| 45 | [p31m,c3,d3] | [(a+ba-c)3;A+cb] | [312] | 18 | triangle | L2310 |
| 45 | ... | [(a+ba-c)3;A+cb] | [312] | 18 | triangle | J59A |
| 45 | ... | [(a+ba-c)3;A+cb] | [312] | 18 | triangle | L255 |
| 46 | [p31m,d3,c1] | [a+b+c+d+e+;A+b-d+c+e-] | [32.4.3.4] | 30 | 3-star,p/6 | NEW99 |
| 47 | [p31m,d3,c1] | [a+b+c+d+;A+c+b+d-] | [(3.5)2] | 30 | 3-star,p/6 | NEWB |
| 48 | [p31m,d3,c1] | [a+b+c+;A+c+b+] | [62.3] | 30 | hexagon | NEWS |
| 49 | [p31m,d3,c3] | [(a+b+)3;A+b-] | [36] | 89 | 3-star,p/6 | NEWC |
| 50 | [p31m,d3,d1] | [ab+c+d+d-c-b-;Ab-d+c+] | [37] | 16 | 3-star,p/4 | NEW48 |
| 50 | ... | [ab+c+d+d-c-b-;Ab-d+c+] | [37] | 16 | triangle | NEW46 |
| 51 | [p31m,d3,d1] | [ab+c+c-b-;Ac+b+] | [42.3.4.3] | 16 | triangle | C05B |
| 51 | ... | [ab+c+c-b-;Ac+b+] | [42.3.4.3] | 16 | 3-star,p/6 | NEW47 |
| 52 | [p3m1,d3,c1] | [a+b+c+d+;A+b-c-d-] | [32.62] | 87 | 3-star,p/6 | NEW51 |
| 53 | [p3m1,d3,c1] | [a+b+c+;A+b-c-] | [3.6.9] | 87 | 3-star,p/6 | NEWD |
| 54 | [p3m1,d3,d1] | [ab+c+c-b-;Ab-c-] | [32.6.3.6] | 35 | triangle | B18 |
| 54 | ... | [ab+c+c-b-;Ab-c-] | [32.6.3.6] | 35 | 3-star,p/4 | NEW42 |
| 55 | [p3m1,d3,d1] | [ab+b-;Ab-] | [92.3] | 35 | triangle | B13 |
| 55 | ... | [ab+b-;Ab-] | [92.3] | 35 | 3-star,p/4 | NEW41 |
| 56 | [p3m1,d3,d1] | [a+b+b-a-c+c-;A+b-c-] | [36] | 35 | 3-star,p/6 | NEWT |
| 57 | [p3m1,d3,d1] | [a+a-b+b-;A+b-] | [3.6.32] | 35 | 3-star,p/6 | NEWU |
| 58 | [p3m1,d3,d3] | [(ab+b-)3;Ab-] | [39] | 19 | 3-star,2p/3 | J44A |
Table 2: Order 3: p3, p31m and p3m1
| No | Symmetries | Incidence | T | IH | Polygon | Name |
| Class | Class | |||||
| 59 | [p4,c4,c1] | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [34.4.3] | 28 | square | P16 |
| 59 | ... | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [34.4.3] | 28 | square | S28A |
| 60 | [p4,c4,c1] | [a+b+c+d+;A+b+d+c+] | [44] | 28 | square | B01 |
| 60 | ... | [a+b+c+d+;A+b+d+c+] | [44] | 28 | square | R4 |
| 61 | [p4,c4,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.43] | 55 | square | NEW55 |
| 62 | [p4,c4,c1] | [a+b+c+;A+c+b+] | [62.4] | 55 | square | NEW56 |
| 63 | [p4,c4,c1] | [a+b+c+d+;A+d+c+b+] | [32.82] | 79 | square | NEW57 |
| 64 | [p4,c4,c2] | [(a+b+c+)2;A+c+b+] | [(32.4)2] | 61 | square | L3010 |
| 64 | ... | [(a+b+c+)2;A+c+b+] | [(32.4)2] | 61 | square | B02 |
| 65 | [p4,c4,c4] | [(a+b+)4;A+b+] | [38] | 62 | square | NEW4 |
| 66 | [p4g,c4,c1] | [a+b+c+d+e+;A+e+c-d-b+] | [32.43] | 56 | square | NEWE |
| 67 | [p4g,c4,c1] | [a+b+c+;A+b-c-] | [62.4] | 56 | square | NEW58 |
| 68 | [p4g,c4,c1] | [a+b+c+d+;A+d+c-b+] | [32.82] | 81 | square | NEW59 |
| 69 | [p4g,c4,d1] | [a+b+b-a-c+dc-;A+c-b-d] | [37] | 29 | square | H2C12 |
| 69 | ... | [a+b+b-a-c+dc-;A+c-b-d] | [37] | 29 | square | K09A |
| 70 | [p4g,c4,d1] | [a+a-b;A+b] | [53] | 29 | square | H2C34 |
| 71 | [p4g,c4,d1] | [a+b+b-a-c+c-;A+c-b-] | [(32.4)2] | 71 | square | G8 |
| 71 | ... | [a+b+b-a-c+c-;A+c-b-] | [(32.4)2] | 71 | square | L3311 |
| 72 | [p4g,c4,d2] | [(a+ba-c)2;A+cb] | [38] | 73 | square | K09B |
| 73 | [p4g,d2,c1] | [a+b+c+d+e+;A+b-d+c+e-] | [32.43] | 56 | 2-star,p/3 | NEWF |
| 74 | [p4g,d2,c1] | [a+b+c+d+;A+b-d+c+] | [3.5.4.5] | 56 | 2-star,p/3 | NEW60 |
| 75 | [p4g,d2,c1] | [a+b+c+;A+c+b+] | [62.4] | 56 | 2-star,p/3 | NEW61 |
| 76 | [p4g,d2,c4] | [(a+b+)4;A+b-] | [38] | 63 | 2-star,p/3 | NEWG |
| 77 | [p4g,d2,d1] | [ab+c+d+d-c-b-;Ab-d+c+] | [33.4.3.4.3] | 29 | 2-star,p/3 | NEW62 |
| 78 | [p4g,d2,d1] | [ab+c+c-b-;Ac+b+] | [45] | 29 | 2-star,p/3 | NEWH |
Table 3: Order 4: p4, and p4g
| No | Symmetries | Incidence | T | IH | Polygon | Name |
| Class | Class | |||||
| 79 | [p4m,d2,c1] | [a+b+c+d+;A+b-c-d-] | [32.82] | 80 | 2-star,p/3 | NEWI |
| 80 | [p4m,d2,c1] | [a+b+c+;A+b-c-] | [3.12.8] | 80 | 2-star,p/5 | NEWV |
| 81 | [p4m,d2,d1] | [a+b+b-a-c+c-;A+b-c-] | [(32.4)2] | 70 | 2-star,p/3 | NEWJ1 |
| 82 | [p4m,d2,d1] | [a+a-b+b-;A+b-] | [3.8.3.4] | 70 | 2-star,p/3 | NEW65 |
| 83 | [p4m,d2,d1] | [ab+c+c-b-;Ab-c-] | [32.8.4.8] | 82 | 2-star,p/3 | NEWJ2 |
| 84 | [p4m,d2,d1] | [ab+b-;Ab-] | [122.4] | 82 | 2-star,p/3 | NEW34 |
| 85 | [p4m,d2,d4] | [(ab+b-)4;Ab-] | [(32.4)4] | 76 | 2-star,p/2 | J51A |
| 86 | [p4m,d4,c1] | [a+b+c+d+;A+b-c-d-] | [32.4.8] | 80 | 4-star,p/4 | NEW8 |
| 87 | [p4m,d4,c1] | [a+b+c+;A+b-c-] | [3.4.12] | 80 | 4-star,p/4 | NEW36 |
| 88 | [p4m,d4,c1] | [a+b+c+;A+b-c-] | [3.6.8] | 80 | 4-star,p/4 | NEW37 |
| 89 | [p4m,d4,d1] | [ab+c+c-b-;Ab-c-] | [32.43] | 70 | square | B04B |
| 89 | ... | [ab+c+c-b-;Ab-c-] | [32.43] | 70 | 4-star,p/4 | NEW32 |
| 90 | [p4m,d4,d1] | [ab+b-;Ab-] | [62.4] | 70 | square | J25A |
| 90 | ... | [ab+b-;Ab-] | [62.4] | 70 | 4-star,3p/4 | B07 |
| 91 | [p4m,d4,d1] | [a+ba-c+c-;A+bc-] | [34.4] | 82 | 4-star,p/4 | NEWK |
| 92 | [p4m,d4,d1] | [a+a-b+b-;A+b-] | [(3.4)2] | 82 | 4-star,p/4 | NEW35 |
| 93 | [p4m,d4,d1] | [a+a-b;A+b] | [3.8.3] | 82 | 4-star,p/4 | NEW38 |
| 94 | [p4m,d4,d1] | [ab+cb-;Ab-c] | [32.82] | 82 | square | B19 |
| 94 | ... | [ab+cb-;Ab-c] | [32.82] | 82 | 4-star,p/4 | NEW39 |
| 95 | [p4m,d4,d1] | [ab;Ab] | [122] | 82 | 4-star,p/4 | NEW40 |
| 96 | [p4m,d4,d2] | [(ab+b-)2;Ab-] | [(32.4)2] | 75 | square | A221 |
| 96 | ... | [(ab+b-)2;Ab-] | [(32.4)2] | 75 | 4-star,p/4 | NEW33 |
| 97 | [p4m,d4,d4] | [(ab)4;Ab] | [38] | 76 | 4-star,p/4 | NEWL |
| No | Symmetries | Incidence | T | IH | Polygon | Name |
| Class | Class | |||||
| 98 | [p6,c3,c1] | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [34.6.3] | 21 | triangle | B09 |
| 99 | [p6,c3,c1] | [a+b+c+d+;A+b+d+c+] | [43.6] | 21 | triangle | NEW67 |
| 100 | [p6,c3,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.4.6.4] | 31 | triangle | NEW68 |
| 101 | [p6,c3,c1] | [a+b+c+;A+c+b+] | [63] | 31 | triangle | NEW69 |
| 102 | [p6,c3,c1] | [a+b+c+d+;A+d+c+b+] | [32.122] | 39 | triangle | NEW70 |
| 103 | [p6,c3,c2] | [(a+b+c+)2;A+c+b+] | [(32.6)2] | 34 | triangle | L4212 |
| 103 | ... | [(a+b+c+)2;A+c+b+] | [(32.6)2] | 34 | triangle | B10 |
| 104 | [p6,c3,c6] | [(a+b+)6;A+b+] | [312] | 11 | triangle | F242F |
| 104 | ... | [(a+b+)6;A+b+] | [312] | 11 | triangle | B11 |
| 105 | [p6,c6,c1] | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [36] | 21 | hexagon | P010 |
| 106 | [p6,c6,c1] | [a+b+c+d+;A+b+d+c+] | [43.3] | 21 | hexagon | B08 |
| 106 | ... | [a+b+c+d+;A+b+d+c+] | [43.3] | 21 | hexagon | NEW71 |
| 107 | [p6,c6,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.4.3.4] | 31 | hexagon | NEW72 |
| 108 | [p6,c6,c1] | [a+b+c+;A+c+b+] | [62.3] | 31 | hexagon | NEW73 |
| 109 | [p6,c6,c1] | [a+b+c+d+;A+d+c+b+] | [32.62] | 88 | hexagon | NEW75 |
| 110 | [p6,c6,c2] | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | F135 |
| 110 | ... | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | F49 |
| 110 | ... | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | W39 |
| 110 | ... | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | RS1 |
| 111 | [p6,c6,c3] | [(a+b+)3;A+b+] | [36] | 90 | hexagon | F242E |
| 111 | ... | [(a+b+)3;A+b+] | [36] | 90 | hexagon | NEW76 |
| 111 | ... | [(a+b+)3;A+b+] | [36] | 90 | hexagon | B06 |
Table 5: Order 6: p6
| No | Symmetries | Incidence | T | IH | Polygon | Name |
| Class | Class | |||||
| 112 | [p6m,d2,c1] | [a+b+c+d+;A+b-c-d-] | [32.6.12] | 77 | 2-star,p/3 | NEWM |
| 113 | [p6m,d2,c1] | [a+b+c+;A+b-c-] | [3.9.12] | 77 | 2-star,p/3 | NEW77 |
| 114 | [p6m,d2,c1] | [a+b+c+;A+b-c-] | [3.18.6] | 77 | 2-star,p/6 | NEW78 |
| 115 | [p6m,d2,d1] | [a+b+b-a-c+c-;A+b-c-] | [35.6] | 32 | 2-star,p/2 | G7 |
| 116 | [p6m,d2,d1] | [a+a-b+b-;A+b-] | [(3.6)2] | 32 | 2-star,p/6 | NEW79 |
| 117 | [p6m,d2,d1] | [a+a-b+b-;A+b-] | [3.12.32] | 32 | 2-star,p/6 | NEW80 |
| 118 | [p6m,d2,d1] | [a+b+c+c-b-;A+b-c-] | [32.12.3.12] | 40 | 2-star,p/3 | NEW81 |
| 119 | [p6m,d2,d1] | [ab+b-;Ab-] | [182.3] | 40 | 2-star,p/6 | NEW82 |
| 120 | [p6m,d2,d1] | [ab+c+c-b-;Ab-c-] | [32.63] | 92 | 2-star,p/3 | NEW83 |
| 121 | [p6m,d2,d1] | [ab+b-;Ab-] | [92.6] | 92 | 2-star,p/3 | NEW84 |
| 122 | [p6m,d2,d3] | [(ab+b-)3;Ab-] | [(32.6)3] | 93 | 2-star,p/2 | NEW3 |
| 123 | [p6m,d2,d6] | [(ab+b-)6;Ab-] | [318] | 20 | 2-star,p/2 | B04 |
| 124 | [p6m,d3,c1] | [a+b+c+d+;A+b-c-d-] | [32.4.12] | 77 | 3-star,2p/3 | NEW7 |
| 125 | [p6m,d3,c1] | [a+b+c+;A+b-c-] | [3.6.12] | 77 | 3-star,p/6 | NEWN |
| 126 | [p6m,d3,c1] | [a+b+c+;A+b-c-] | [3.18.4] | 77 | 3-star,p/6 | NEW86 |
| 127 | [p6m,d3,d1] | [ab+c+c-b-;Ab-c-] | [32.4.6.4] | 32 | 3-star,2p/3 | NEW6 |
| 127 | ... | [ab+c+c-b-;Ab-c-] | [32.4.6.4] | 32 | 3-star,p/6 | NEWP2 |
| 128 | [p6m,d3,d1] | [ab+b-;Ab-] | [63] | 32 | 3-star,p/6 | NEW87 |
| 129 | [p6m,d3,d1] | [ab+cb-;Ab-c] | [32.122] | 40 | 3-star,p/6 | NEW88 |
| 130 | [p6m,d3,d1] | [ab;Ab] | [182] | 40 | 3-star,p/6 | NEW89 |
| 131 | [p6m,d3,d1] | [a+ba-c+c-;A+bc-] | [34.6] | 92 | 3-star,2p/3 | NEW9 |
| 131 | ... | [a+ba-c+c-;A+bc-] | [34.6] | 92 | 3-star,p/6 | NEWP1 |
| 132 | [p6m,d3,d1] | [a+a-b+b-;A+b-] | [3.4.3.6] | 92 | 3-star,p/6 | NEW90 |
| 133 | [p6m,d3,d1] | [a+a-b;A+b] | [3.12.3] | 92 | 3-star,p/6 | NEW91 |
| 134 | [p6m,d3,d2] | [(ab+b-)2;Ab-] | [(32.6)2] | 37 | 3-star,p/6 | NEWQ |
| 135 | [p6m,d3,d6] | [(ab)6;Ab] | [312] | 20 | 3-star,2p/3 | J59B |
| 136 | [p6m,d6,c1] | [a+b+c+d+;A+b-c-d-] | [32.4.6] | 77 | 6-star,p/3 | NEWR |
| 137 | [p6m,d6,c1] | [a+b+c+;A+b-c-] | [3.62] | 77 | 6-star,p/6 | NEW92 |
| 138 | [p6m,d6,c1] | [a+b+c+;A+b-c-] | [3.9.4] | 77 | 6-star,p/3 | NEW93 |
| 139 | [p6m,d6,d1] | [ab+c+c-b-;Ab-c-] | [32.4.3.4] | 32 | hexagon | C09B |
| 139 | ... | [ab+c+c-b-;Ab-c-] | [32.4.3.4] | 32 | 6-star,p/3 | S14A |
| 140 | [p6m,d6,d1] | [ab+b-;Ab-] | [62.3] | 32 | 6-star,p/3 | NEW94 |
| 141 | [p6m,d6,d1] | [a+ba-c+c-;A+bc-] | [35] | 40 | 6-star,p/3 | NEW96 |
| 142 | [p6m,d6,d1] | [a+a-b;A+b] | [3.6.3] | 40 | 6-star,p/3 | NEW97 |
| 143 | [p6m,d6,d1] | [a+a-b+b-;A+b-] | [3.4.32] | 40 | 6-star,p/3 | NEW98 |
| 144 | [p6m,d6,d1] | [ab+cb-;Ab-c] | [32.62] | 92 | hexagon | VA1 |
| 145 | [p6m,d6,d1] | [ab;Ab] | [92] | 92 | 6-star,p/3 | NEW95 |
| 146 | [p6m,d6,d2] | [(ab+b-)2;Ab-] | [36] | 37 | hexagon | B20 |
| 147 | [p6m,d6,d3] | [(ab)3;Ab] | [36] | 93 | 6-star,p/3 | B15 |
| 147 | ... | [(ab)3;Ab] | [36] | 93 | hexagon | B05 |
changes done are in John's letter, 25th June 2001
Summaries of the tilings from these tables are as follows:
The enumeration is completed by showing how to obtain the tilings of this class from a marked isohedral tiling. We do those by example, taking the marked isohedral class 92 which is shown in Figure 4.The regular tile must have its centre on the edge of the isohedral tiling. There are just three positions for this, marked A (centre for d6), B (centre for d3) and C (centre for d2) in Figure 4.
We now consider in turn those three positions:
Note that it is not always possible to place a regular tile on the edge of the isohedral tiling, even when the point in question has the appropriate symmetry. Consider the tiling NEW45, but with the triangles removed, ie, the original marked isohedral tiling. A triangle cannot be placed at the vertex of valency 6 although that point has the necessary symmetry (because it would not be edge-to-edge).
In the case of the irregular tile, it may be necessary to avoid a specific construction which would introduce an unwanted symmetry. For an example of this, see NEW97.
In some cases, a potential tiling of this class is not possible, since the irregular tile must, in fact, be regular.
It would seem that a similar reasoning to that applied here would allow for the enumeration of, say, two (distinct) regular tiles and an irregular one. However, the number of cases could make such an enumeration very tedious.
1 John Dawes died on the 19th January 2002 and hence this article is dedicated to his memory.